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Motivation

Let us consider Zd as a (idealized) crystal lattice. Then :

• A vertex of Zd → atom (or ion) that forms the crystal.

• An edge connecting two vertices → a chemical bond of two atoms.

• The spectrum of −∆Zd → the energy of an electron in the crystal.

Part I: We consider H = −∆Zd + δ(x) describing an electron interacting

with an impurity.

Part II: We deform Zd by adding another vertex periodically. Then the

resulting graph describes a deformed crystal by adding another atom.� �
We are interested in how the spectrum changes in the presence of an

impurity and in deforming the lattice.� �



PART I: Discrete Schrödinger operator

Joint work with F. Hiroshima, I. Sasaki and T. Shirai



1 Definition of Laplacian on a graph

Let G = (V (G), E(G)) be a graph:

• V (G) : the set of vertices

• E(G) : the set of edges

If there is an edge connecting two vertices x and y, then we denote the

edge by {x, y}, say that x is adjacent to y, and write x ∼ y.

• deg x = #{y ∈ V (G) | y ∼ x}

Example:

• Zd is a graph.

V (Zd) = Zd, E(Zd) = {{x, y} | |x− y| = 1}
For example, in the case of d = 1, x ∈ Z is adjacent to y = x± 1.

In general, for x ∈ Zd, we have deg x = 2d. □



Define the Laplacian −∆G on G as follows:

(−∆Gψ)(x) =
1

deg x

∑
y∼x

{ψ(x)− ψ(y)}, ψ ∈ ℓ2(V (G))

• ℓ2(V (G)) = {ψ : V (G) → C |
∑

x∈V (G)(deg x)|ψ(x)|2 <∞}

• ⟨ψ, φ⟩ =
∑

x∈V (G)(deg x)ψ(x)φ(x)

Then −∆G is bounded self-adjoint on ℓ2(V (G)).

Example : the Laplacian on Z

• ∀x ∈ Z is adjacent to x± 1 and deg x = 2.

• −∆Z is

(−∆Zψ)(x) =
1

2
{(ψ(x)− ψ(x+ 1)) + (ψ(x)− ψ(x− 1)}

= ψ(x)− 1

2
(ψ(x+ 1) + ψ(x− 1))



What is the Laplacian on Z?
Let ψ(x) = ϕ(hx). Then

ψ(x+ 1) = ψ(x) + hψ′(x) +
h2

2
ψ′′(x) +O(h3)

ψ(x− 1) = ψ(x)− hψ′(x) +
h2

2
ψ′′(x) +O(h3)

∴ −ψ′′(x) =
1

h2
(−∆Zψ)(x) +O(h)

Warm up: Let F be the discrete Fourier transformation:

(Fψ)(k) =
∑
x∈Z

e−ik·xψ(x), k ∈ [−π, π].

Then Fψ(· ± 1)(k) = e±ik(Fψ)(k) and

F(−∆Z)F−1 = 1− cos k.

∴ σ(−∆Z) = [0, 2].



2 Problem
The spectrum of the Schrödinger operator with a delta potential:

Let H(v) = −∆Zd − vδ0(x) (v ≥ 0).

δ0(x) =

0, x ̸= 0

1, x = 0

In the case of v = 0:

σ(H(0)) = σess(H(0)) = σ(−∆Zd) = [0, 2]

Since δ0(x) is a finite rank operator, we have

σess(H(v)) = [0, 2], v ≥ 0, d ≥ 1.

We are interested in

• σp(H(v)) : the set of eigenvalues

• σd(H(v)) : the set of discrete eigenvalues



REMARK 1 (embedded eigenvalue). In general, σd(H(v)) ⊂ σp(H(v)).

For example, it is possible that

E ∈ σp(H(v)) \ σd(H(v)) is an embedded eigenvalue.

REMARK 2 (continuous analog). Let

HS(v) = −∆Rd − vW (x)

be the Schrödinger operator on L2(Rd) and suppose that

W ≥ 0, W ∈ C∞
0 (Rd).

Then σess(HS(v)) = [0,∞) for all d ≥ 1 and v ≥ 0 and

• d = 1, 2 =⇒ HS(v) has an eigenvalue E(v) < 0 for all v > 0.

• d ≥ 3 =⇒ ∃v0 > 0 such that

i) HS(v) has no negative eigenvalue for v < v0

ii) HS(v) has an eigenvalue E(v) < 0 for v > v0



3 The spectrum of H(v) = −∆Zd − vδ0(x)

Let

gd(k) =
1

d

d∑
j=1

cos kj

with k = (k1, · · · , kd) ∈ [−π, π]d. Note that

F(−∆Zd)F−1 = 1− gd

and hence σ(−∆Zd) = [0, 2]. Similarly, we have

FH(v)F−1 = 1− gd − vP, L2([−π, π]d).

where

(Pf)(k) =
1

(2π)d

∫
[−π,π]d

f(k)dk, f ∈ L2([−π, π]d).

Let φ ≡ (2π)−d/2 ∈ L2([−π, π]d). Then Pf = ⟨φ, f⟩L2([−π,π]d)φ, so the

dimension of the range of P is one and P is a finite rank operator.



THEOREM 1.

(1) d = 1, 2: ∀v > 0, ∃E(v) < 0 such that

σd(H(v)) = σp(H(v)) = {E(v)}.

In particular, if d = 1, then E(v) = 1−
√
1 + v2.

(2) d = 3, 4: ∃vc > 0 such that

i) v ≤ vc ⇒ σp(H(v)) = ∅.
ii) v > vc ⇒ σd(H(v)) = σp(H(v)) = {E(v)} with some E(v) < 0.

(3) d ≥ 5: ∃vc > 0 such that

i) v < vc ⇒ σp(H(v)) = ∅.
ii) v = vc ⇒ σp(H(v)) = {0}.
iii) v > vc ⇒ σd(H(v)) = σp(H(v)) = {E(v)} with some E(v) < 0.



REMARK 3. For d = 1, 2, we set vc = 0. Then

• 0 ≤ v ≤ vc ⇒ σ(H(v)) = σ(−∆Zd) = [0, 2].

• For 1 ≤ d ≤ 4, E(v) ∈ σp(H(v)) iff. v > vc.

• For d ≥ 5, E(v) ∈ σp(H(v)) iff. v ≥ vc.

• It is easy to see, for d = 1, E(v) is monotonically decreasing in v ≥ vc

and limv→vc E(v) = 0. This is the case for d ≥ 2.

• In particular, E(vc) = 0 is an embedded eigenvalue for d ≥ 5.

E(v)

v −→ vc

E(v) E(vc) = 0

v −→ vc

v >> 1 0

1 ≤ d ≤ 4

d ≥ 5

Embedded eigenvalue

Disappear 2



4 Proof of Theorem 1
Let h(v) = gd + vP . Then FH(v)F−1 = 1− h(v) and hence

λ ∈ σp(h(v)) ⇐⇒ 1− λ ∈ σp(H(v)).

ker(h(v)− λ) = ker(H(v)− E), E = 1− λ.

We will consider σp(h(v)):

LEMMA 1. λ ∈ σp(h(v)) is equivalent to:

1

λ− gd
∈ L2([−π, π]d) and v = (2π)d

(∫
[−π,π]d

dk

λ− gd(k)

)−1

.

Moreover, if ψ is an eigenvector of λ ∈ σ(h(λ)), then

ψ(k) =
c

λ− gd(k)
with some c ∈ C.

In particular, λ ∈ σp(h(λ)) is simple.



Proof of LEMMA 1: Let ψ be an eigenvector of λ ∈ σp(h(λ)). Then

gd(k)ψ(k) +
v

(2π)d

∫
[−π,π]d

ψ(k)dk = λψ(k)

∴ ψ(k) =
c

λ− gd(k)
∈ L2([−π, π]d), (1)

where

c =
v

(2π)d

∫
[−π,π]d

ψ(k)dk. (2)

Substituting (1) into (2), we have

1 =
v

(2π)d

∫
[−π,π]d

1

λ− gd(k)
dk

∴ v = (2π)d
(∫

[−π,π]d

1

λ− gd(k)

)−1

.

□



Condition: v = (2π)d
(∫

[−π,π]d
1

λ−gd(k)
dk
)−1

Note that

λ ∈ (−1, 1) ⇐⇒ 1

λ− gd
̸∈ L1([−π, π]d)

and hence σp(h(v)) ∩ (−1, 1) = ∅. Since

λ ∈ (−∞,−1] ⇐⇒
∫
[−π,π]d

1

λ− gd(k)
dk ≤ 0,

we see that σp(h(v)) ⊂ [1,∞).

LEMMA 2. The function

[1,∞) ∋ λ 7→ (2π)d
(∫

[−π,π]d

1

λ− gd(k)
dk

)−1

∈ [vc,∞)

is a continuous (strictly) increasing function, where

vc = (2π)d
(∫

[−π,π]d

1

1− gd(k)
dk

)−1

∈ [0,∞).



From LEMMA 2, we observe that

v ∈ [vc,∞) ⇐⇒ ∃λ = λ(v) s.t. v = (2π)d
(∫

[−π,π]d

1

λ− gd(k)
dk

)−1

Let us calculate the value of vc. Note that

1− gd(k) ≈
|k|2

2d
, |k| ≈ 0∫

[−π,π]d

1

1− gd(k)
dk ≥ c

∫
[−ϵ,ϵ]d

1

|k|2
dk = +∞, d = 1, 2

∴ vc = (2π)d
(∫

[−π,π]d

1

1− gd(k)
dk

)−1

= 0, d = 1, 2

> 0, d ≥ 3.

Hence, we have σp(h(v)) = ∅ if d ≥ 3 and v ∈ [0, vc).



Condition: 1
λ−gd

∈ L2([−π, π]d)

Note that if v ∈ (vc,∞), then ∃λ = λ(v) ∈ (1,∞) such that λ satisfies

v = (2π)d
(∫

[−π,π]d
1

λ−gd(k)
dk
)−1

.

If λ(v) > 1, then infk∈[−π,π]d |λ(v)− gd(k)| > 0 and hence
1

λ(v)−gd
∈ L2([−π, π]d).

∴ λ(v) ∈ σp(h(v)), v > vc.

In the case of v = vc:

λ(vc) = 1 and
1

|1− gd(k)|2
≈ 4d2

|k|4
, near k = 0.

Hence
1

1− gd
∈ L2([−π, π]d) ⇐⇒ d ≥ 5.



PART II: Discrete Laplacian on a graph



5 Models� �
DEFINITION 1.

(1) A vertex of degree one is called an end vertex.

(2) An edge incident to an end vertex is called a pendant edge.

(3) Let G be a graph obtained from Zd by adding pendant edges

periodically. Then we say that G ∈ G d.� �
We consider the spectrum of −∆G on G ∈ G d with d = 1, 2.

REMARK 4. In the case of the crystal lattice:

Adding a pendant edge to Zd → adding another atom to the crystal

→ deformation of the crystal.

We are interested in how the spectrum changes in deforming the crystal.



Example 1. Let G1,1 ∈ G 1 be a graph obtained from Z by adding a

pendant edge at each vertex of Z. Then we identify V (G1,1,) with

Z× {0, 1} as follows:

• A vertex n ∈ Z is identified with (n, 0) ∈ Z× {0, 1}.
• An end vertex adjacent to n ∈ Z is identified with (n, 1) ∈ Z× {0, 1}.

(n− 1, 0) (n, 0) (n+ 1, 0)

(n− 1, 1) (n, 1) (n+ 1, 1)

Z

: added end vertex

: vertex of Z

Graph G1,1



Let us calculate the spectrum of −∆G1,1 :

• The Laplacian −∆G1,1 on ℓ2(Z× {0, 1}) is given as follows.

The vertex (n, 0) ∈ Z× {0, 1} has degree 3 and

(−∆G1,1ψ)(n, 0) =
1

3
{(ψ(n, 0)− ψ(n+ 1, 0))

+ (ψ(n, 0)− ψ(n− 1, 0)) + (ψ(n, 0)− ψ(n, 1))}.

The vertex x = (n, 1) ∈ Z× {0, 1} has degree 1 and

(−∆G1,1ψ)(n, 1) = ψ(n, 1)− ψ(n, 0)

• Let J : ℓ2(Z× {0, 1}) −→ L2([−π, π]d;C2) be a unitary operator

defined by

(Jψ)(k) =

(
ψ̂(k, 0)

ψ̂(k, 1)

)
, ψ ∈ ℓ2(Z× {0, 1}),

where ψ̂(k, s) = (2π)−1/2
∑

n∈Z e
−iknψ(n, s), (k, s) ∈ [−π, π]× {0, 1}.



• Using J , we have

J (−∆G1,1)J −1 =

(
1− 2

3
cos k −1

3

−1 1

)
on L2([−π, π]d;C2).

• The eigenvalues of this matrix are

λ±(k) = 1− 1

3
cos k ± 1

3

√
cos2 k + 3

and hece

σ(−∆G1,1) = {λ−(k) | k ∈ [−π, π]} ∪ {λ+(k) | k ∈ [−π, π]}

=

[
0,

2

3

]
∪
[
4

3
, 2

]
• In particular, −∆G1,1 has a spectral gap!



Example 2. Let G2,1 ∈ G 1 be a graph obtained from Z by adding a

pendant edge to Z alternately. We still consider V (G2,1) ⊂ Z× {0, 1}.

(n+ 1, 0)(n, 0) (n+ 2, 0)

(n, 1) (n+ 2, 1)

Z

: vertex of degree 1

: vertex of degree 2

Graph G2,1

: vertex of degree 3

A calculation similar to G1,1 leads that there exists a unitary

J : ℓ2(V (G2,1)) −→ L2([−π, π];C3) such that

J (−∆G2,1)J −1 =

 1 −1+e−ik

3
−1

3

−1+eik

2
1 0

−1 0 1





• The eigenvalues of the matrix is λ0(k) ≡ 1 and

λ±(k) = 1±
√

2 + cos k

3

and

σ(−∆G2,1) =

[
0, 1− 1√

3

]
∪ {1} ∪

[
1 +

1√
3
, 2

]
• In particular, σp(−∆G2,1) = {1} and −∆G2,1 has a spectral gap!

REMARK 5. The periodicity of pendant edges of G ∈ G 1 means that:� �
∃ r ∈ N such that

(n, 1) ∈ V (G) ⇐⇒ (n+ r, 1) ∈ V (G).� �
Example: For G1,1 and G2,1, we see that r = 1 and r = 2, respectively.



Let G ∈ G 1 with a period r ∈ N. Then we define

s := #{(n, 1) ∈ V (G) | n = 1, · · · r}

Example: For G1,1 and G2,1, we see that s = 1.

THEOREM 2. Let G and r be as above. Suppose that s ≥ 1. Then:

(1) −∆G has a spectral gap around one, i.e.,

σ(−∆G) ∩ (1− ϵ, 1 + ϵ) = ∅ with some ϵ > 0.

(2) −∆G has no eigenvalue except for one, i.e.,

σp(−∆G) \ {1} = ∅.

(3) 1 ∈ σp(−∆G) iff. there is a series of vertices of degree two satisfying

the following: (i) these vertices are adjacent to each other and adjacent

to vertices of dgree three at the both ends; (ii) the number of these

vertices in this series is odd.



Example: We consider the following graph G4,1 ∈ G 1 with a period

r = 4 and s = 1.

(n+ 1, 0)(n, 0) (n+ 2, 0)

(n, 1)

Z

: vertex of degree 1

: vertex of degree 2

: vertex of degree 3

(n+ 3, 0)(n+ 4, 0)

(n+ 4, 1)

Then (n+ 1, 0), (n+ 2, 0), (n+ 3, 0) are a series of vertices of degree

two satisfying (i) and (ii):

(i) (n+ 1, 0), (n+ 2, 0), (n+ 3, 0) are adjacent to each other and

(n+ 1, 0) and (n+ 3, 0) adjacent to vertices of degree three.

(ii) The number of these vertices of degree two is three, so it is odd.

Hence we have 1 ∈ σp(−∆G4,1).



Example: In the case of G2,1, (n+ 1, 0) is a vertex of degree two

satisfying (i) and (ii) in the following sense:

(n+ 1, 0)(n, 0) (n+ 2, 0)

(n, 1) (n+ 2, 1)

Z

: vertex of degree 1

: vertex of degree 2

Graph G2,1

: vertex of degree 3

(i) (n+ 1, 0) is adjacent to vetices of degree three at the both sides.

(ii) The number of such a vertex of degree two is one, so it is odd.

Actually, we have shown that 1 ∈ σp(−∆G2,1).



Example: We consider the following graph G3,1 ∈ G 1 with a period

r = 3 and s = 1.

(n+ 1, 0)(n, 0) (n+ 2, 0)

(n, 1)

Z

: vertex of degree 1

: vertex of degree 2

: vertex of degree 3

Then (n+ 1, 0), (n+ 2, 0) are a series of vertices of degree two, which

are adjacent to each other and adjacent to vetices of degree three at

both ends.

However, the number of these vetices are two.

Hence σp(−∆G3,1) = ∅.



6 Idea of the proof of Theorem 2 (3)

In the case of −∆G2,1 , we have

J (−∆G2,1)J −1 =

 1 −1+e−ik

3
−1

3

−1+eik

2
1 0

−1 0 1

 ≡ L(k).

The eigenvalue λ of L(k) satisfy

|λ− L(k)| =

∣∣∣∣∣∣∣
λ− 1 1+e−ik

3
1
3

1+eik

2
λ− 1 0

1 0 λ− 1

∣∣∣∣∣∣∣ ≡
∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11a22a33 − a13a31a22 − a12a21a33 = 0.

Since aii = (λ− 1), we see that λ = 1 an eigenvalue of L(k).

In order to extend this result, we use a graph theoretic calculation as

follows:



We consider r + s = 3 vertices in a period such as (n, 0), (n+ 1, 0) and

(n, 1) and call them 1, 2 and 3. Then the factor ajj = λ− 1 corresponds

to a vertex i; the factor aijaji corresponds to an edge connecting i and j.

1

3

2

a13a31 a12a21

a33

a11
a22

a11a22a33 ∼ (λ− 1)3 (a13a31)× a22 ∼ (λ− 1)1

(a12a21)× a33 ∼ (λ− 1)1



In the case where (ii) are not satisfied:

For G3,1, we consider r + s = 4 vertices in a period such as (n, 0),

(n+ 1, 0), (n+ 2, 0) and (n, 1) and call them 1, 2, 3 and 4.

1

4

2 (a14a41)× (a23a32) ∼ (λ− 1)03

Since the number of vetices of degree two which are adjacent to each

other in a period is two, (λ− 1)0 is possible. Hence there is no eigenvalue.

REMARK 6. Higher dimensional cases are more complicated. Indeed,

there are graphs G,G′ ∈ G 2 such that −∆G has a spectral gap but

−∆G′ has no spectral gap.



Thank you for your kind attention!


